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Abstract Whilst consumption by rodents is often

invoked as a major mortality factor for large-seed

species of trees, its relative importance compared

with other mortality factors is poorly known. We

investigated experimentally the fate of post-dispersal

seeds of Quercus glauca under different understorey

environments (areas covered by (i) a pteridophyte

Pyrrosia lingua, (ii) a ground-vine, Trachelospermum

asiaticum and (iii) no vegetation) from the germina-

tion stage to seedling emergence and establishment

stages in humid maritime woodland. We employed a

pair of caged and uncaged treatments to evaluate the

impact of seed removal/predation by rodents, which

allowed us to separate seed removal/predation mor-

tality from mortality due to other factors. Effects by

rodents were greater in the no-understorey habitat

than in the Pyrrosia and Trachelospermum habitats at

early stages of development, whilst non-rodent-asso-

ciated mortality was relatively more important

towards the seedling establishment stages in all

habitats. In the absence of predation/removal by

rodents (i.e. the caged treatment), more seedlings

survived in the no-understorey habitat whilst seed-

lings were significantly taller in the Pyrrosia habitat.

In contrast, no significant difference was observed in

either seed/seedling survivorship or seedling height

amongst habitats where seeds/seedlings were exposed

to rodent predation/removal. Overall, this study in a

humid maritime woodland has revealed the tempo-

rally variable influence of mortality factors and the

context-dependent survival of oak seeds/seedlings,

making a contrast to observations in drier woodlands;

in the no-understorey environment predation/removal

effect was heavier but later survivorship was higher,

whilst in vegetated environments, predation/removal

was reduced but survivorship was not high.

Keywords Predation effect � Non-predation

mortality � Paired experimental design �
Null model � GLMM � Odds ratio

Introduction

Seed/seedling stages are ecologically critical in the

life histories of many plant species (Janzen 1971;

Harper 1977; Silvertown and Charlesworth 2001). In

forest ecosystems, the characteristics of understorey

environments are important for the fate of dispersed

seeds and seedlings (Tripathi and Khan 1990; Beck-

age and Clark 2003). The survival of oak seeds is

affected by various factors including predation (Hul-

me 1994, 1997; Pons and Pausas 2007; Bonal and

Muñoz 2007; Muñoz and Bonal 2007; Gómez et al.
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2008), competition between plants (Wada 1993; Coll

et al. 2004; Iida 2004; Itô and Hino 2007), seed size

(Tripathi and Khan 1990; Osunkoya et al. 1994;

Green and Juniper 2004), abiotic factors, such as light

availability (Rodrı́guez-Calcerrada et al. 2008),

humidity and soil moisture (Garcı́a et al. 2002). In

addition, these factors are influenced in turn by

ground conditions such as litter cover (Myster and

Pickett 1993; George and Bazzaz 1999a; Garcı́a et al.

2002) and understorey vegetation (Rao et al. 1997;

George and Bazzaz 1999a, b; Beckage and Clark

2003; Donath and Eckstein 2008). It is also known

that vegetation cover at ground level functions as an

ecological filter which selects post-dispersal seeds as

recruits (George and Bazzaz 1999a; Caccia et al.

2006; Griffiths et al. 2007; Itô and Hino 2007; see

review by Royo and Carson 2006). Apart from

reducing light availability for seeds and seedlings

(Wada 1993; Beckage and Clark 2003; George and

Bazzaz 1999a), understorey vegetation creates refu-

gia and feeding microhabitats for seed predators,

particularly rodents (Wada 1993; Iida 2004, 2006; Itô

and Hino 2007; Tsvuura et al. 2007). In general,

rodents tend to forage more actively in areas where

there are less risks of being attacked by vertebrate

predators, which might in part be related to the height

of understorey vegetation. Indeed, seed predation has

been associated with relatively dense understorey

vegetation, e.g. dwarf bamboos in cool temperate

forests (Sasa spp. e.g. Wada 1993; Abe et al. 2001;

Iida 2004), herbs without tree canopy (Gill and Marks

1991) and ferns in deciduous forests (George and

Bazzaz 1999a).

In Mediterranean woodlands, it is known that oak

seeds tend to experience elevated predation pressure

from rodents in understorey habitats, but at the same

time, the survival of oak seeds is enhanced by

understorey vegetation that ameliorates abiotic stress,

particularly in drought conditions, under the arid

climate (Pérez-Ramos and Marañón 2008; Pérez-

Ramos et al. 2008; Smit et al. 2008). A question

arises as to whether the same situation applies to oaks

in humid coastal woodlands such as those found in

east Asia where drought does not normally consti-

tutes a serious stress factor.

Whilst predation by rodents has been recognised

as a major factor affecting the survival of dispersed

seeds (Gill and Marks 1991; Ostfeld et al. 1997;

Hulme 1997; Rousset and Lepart 2000; Iida 2006;

Gómez et al. 2008), some concerns have been raised

about the evaluation of predation effects (Vander

Wall et al. 2005). Although many studies attempted

to identify the causes of death by examining dead and

damaged seeds, the relative magnitude of predation

loss (due to rodents) has rarely been assessed

alongside that of non-predation mortality. Related

to this, different mortality factors may operate at

different times within the time scale of several weeks

to months, resulting in a discordance between the

optimal regeneration niche at different stages of seed/

seedling development (Shupp and Fuentes 1995).

Further, the true magnitude of predation mortality

may be overestimated if the number of lost seeds is

used simply as indicator of predation by rodents; had

it not been for rodents, those (removed) seeds may

have died from other mortality factors. In addition,

unconsumed seeds may be hoarded or dispersed (Iida

2006; Gómez et al. 2008; Muñoz et al. 2009) and,

even if partially eaten, a seed can still germinate if its

embryo is intact (Steele et al. 1993; Xiao et al. 2007;

Bonal et al. 2007).

The objective of this study is to evaluate the

magnitude of seed predation/removal by rodents

relative to that of other seed mortality factors under

different understorey environments. We tested the

hypothesis that the magnitude of seed/seedling losses

due to predation and other factors is the same under

three different types of understorey habitat. To

address this issue, we conducted an experiment using

a pair of caged and uncaged treatments to simulta-

neously assess the losses of oak seeds due to rodents

and other factors from the seed germination stage

through to seedling establishment in a humid tem-

perate/subtropical maritime woodland.

Caution must be exercised when comparison is

made between this and some previous studies where

predation by rodents was assumed to be equated with

the combined mortality (&number of seeds/seedlings

lost from an experimental site). If no caged or

predator-exclusion treatment is carried out at the

same time, then it would be difficult to assess the

extent of overestimation (of predation mortality).

Note also that the derivation of the difference

between total and non-predation mortality is facili-

tated by the pairing of caged and uncaged treatments

placed in the same microhabitat, thereby reducing

environmental noise interfering with this calculation.

If caged and uncaged treatments were each randomly
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placed within the study site, then the calculation

would have been more troublesome, if not impossi-

ble. Thus, the experimental arrangement adopted in

this study helped us detect variable patterns of

predation and non-predation mortality through dif-

ferent stages of seed/seedling development.

Materials and methods

Study site

The study site was located on the north-western

corner of the Amakusa Shimoshima Island in Kyu-

shu, south-western Japan (32�320N, 130�020E). This

region has been described as subtropical with summer

surface water temperatures constantly reaching above

28�C (Kawai and Tokeshi 2004). The woodland

occurred in a narrow sand spit, projecting into the

Ariake Sea, part of the East China Sea, covering a

total of 23300 m2. The apical area (500 m long) of

this spit, 0–3.8 m above sea level, was chosen as

study site. This site was partially isolated from the

basal part of the spit by a narrow (c. 10 m), barren

gap where the seawater breached the land in the past

and its eastern side was exposed to the effect of sea

wind, whilst the western side was more protected by

steep coastal hills across a small enclosed bay. Whilst

the only source of freshwater into this woodland was

through precipitation, humidity in the woodland was

high with an annual rainfall of 1711.6 ± 140.2 mm

(mean ± SE for 2005–2009). In 2008 when the main

part of this study was undertaken, the rainfall

between April and November was 1697 mm and

the annual total 2207 mm.

Quercus glauca Thunb. is an evergreen oak species

that occurs commonly in secondary forests of warm

temperate East Asia including southern Japan. It was

the most dominant tree species forming the canopy in

the study site. We categorised three habitats based on

the characteristics of understorey cover: (i) no-under-

storey vegetation, (ii) Trachelospermum asiaticum

(Siebold et Zucc.) (a ground-vine species with

ground-covering and climbing tendency) and (iii)

Pyrrosia lingua (Thunb.) (a single-leaved pterido-

phyte species forming ground cover). The height of

understorey vegetation was 10–20 cm in the Trache-

lospermum habitat and 30–40 cm in the Pyrrosia

habitat. These vegetative covers may affect the

feeding behaviour of a major acorn consumer, a

rodent Apodemus speciosus (Temminck), in this study

site. Potential predators of A. speciosus were weasels,

Martes melampus melampus (Wagner) and Mustela

itatsi (Temminck), but their occurrences were rare or

accidental. There are no other larger consumers of oak

seeds, such as deer, wild boars or cattle in this

maritime oak woodland (Yoko-o and Tokeshi 2011),

in contrast to well-studied Mediterranean oak wood-

lands where mammal predators are abundant (e.g.

Leiva and Fernández-Alés 2003; Gómez 2004; Pulido

and Dı́az 2005; Gómez and Hódar 2008; Pérez-Ramos

and Marañón 2008; Pérez-Ramos et al. 2008).

Experimental design

The experiment was conducted within an area of

30 9 100 m where the three types of understorey

environment (no-understorey, Trachelospermum and

Pyrrosia) occurred patchily beneath a canopy ([4 m)

of Q. glauca. Canopy openness in the study site

(assessed photographically using a fish-eye lens

attached to a digital camera, Yoko-o and Tokeshi

2011) was c. 10% (mean with SD, 11.3 ± 0.8% in

April 2005, 9.5 ± 1.3% in June 2005). We avoided

the edge areas where canopy openness was greater

than that in the interior of the woodland (Yoko-o and

Tokeshi 2011). Seeds for the experiment were

collected in the vicinity of [20 parent trees using

hanging nylon-net traps or manually from the ground

in November 2007; seeds were abundant on the

ground until spring 2008. Intact seeds of medium

sizes (mean (±SD) fresh weight: 1.71 ± 0.35 g)

were stored under outdoor conditions until use in

spring 2008, and non-germinated acorns were

selected by the water-floating method (e.g. Bonfil

1998; Gómez 2004; Garcı́a and Houle 2005; Iida

2006) before the start of the experiment.

We employed a paired design with caged and

uncaged treatments for evaluating the magnitudes of

by-rodent losses of seeds/seedlings relative to that of

non-rodent factors. Use of the uncaged treatment only

would lead to an overestimation of the true, effective

magnitude of predation, as seeds may have died, even

if not consumed by rodents, for reasons other than

predation by rodents. This means that the number of

seeds lost from a site (or conversely, the number

remaining) may not be a reliable indicator of

predation mortality. On the other hand, if seeds were
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handled by rodents, they are more likely to be

destined to die because of either direct predation or

other mortality factor(s) (e.g. mould infection, which

might have caused a rodent to reject the seed).

Therefore, in the present study, the number of seeds/

seedlings dead or lost from the uncaged treatment

was treated as total or ‘combined’ loss, and the

number lost from the caged treatment as ‘non-rodent’

loss, with the difference between the former and latter

being an indicator of effective loss due to rodents (see

‘‘Data analysis’’ section).

We set up a pair of uncaged (control) and caged

treatment within a plot (50 9 50 cm) as one replica-

tion (Fig. 1) in three types of habitat. Plots under

vegetation cover, i.e. in Trachelospermum and Pyrr-

osia habitats, had c. 100% cover of each plant. Ten

acorns, marked by marker pen, were placed on the

ground surface in each treatment. A total of 13

replications were established in 13 separate plots of

each habitat on 10–14 April 2008. Cages made of

5-mm stainless steel mesh were employed to exclude

rodents (Fig. 1). The 4-cm height of the cage protected

acorns and the basal part of a seedling shoot, but not the

leaves longer than this height. This allowed insect

herbivores to consume seeds/seedling. The cages did

not interfere with shoot growth and leaf expansion.

Survival of seeds and seedlings was monitored

daily in April and May, every two/three days in June,

every week in July–November 2008, and finally in

May 2010. Seed and seedling survivorship was

assessed at different stages of development, i.e.

germination (defined as first appearance of root

through the seed coat), seedling emergence (appear-

ance of the first leaves), and seedling establishment

(shoot extending beyond the cage roof with leaves

expanded). After seedling establishment, the height

of each seedling was measured in July, August and

October–November 2008.

Data analysis

We adopted two separate approaches to clarifying the

patterns of seed mortality: (i) a null model-based

analysis, and (ii) the generalised linear-mixed model.

The former had an advantage of directly assessing the

magnitude of difference between the paired, caged

versus uncaged treatments (see Tokeshi 1999 for

application of null models in general), whilst the

latter allowed an integrative analysis of the effects of

three variables on overall patterns (without taking

into account the paired data structure).

The overall effect of rodents in terms of predation/

removal of seeds and seedlings (‘rodent effect’, E)

was quantified using a null model-based measure that

expressed the degree of departure from the situation

where there was no influence of rodents on the loss of

seeds/seedlings, thus

E ¼
P
ðNc � NuÞ=n�M

SD

Nc and Nu are the number of seeds/seedlings

remaining alive in the caged and the uncaged

treatment, respectively, of a paired set, and n is the

number of replicated pairs. Note that Nc - Nu

represents an ‘estimated maximum’ of the loss due

to predation by rodents, assuming the eventual death

of all seeds/seedling removed; in other words, true

net mortality due to rodent predation would not

exceed this value. Individual values of Nc - Nu may

be positive or negative, depending on the relative

magnitudes of Nc and Nu and their random fluctua-

tions. M and SD are the mean and standard deviation,

respectively, of a null model (probability mass

function) relating to the mean of Nc - Nu in which

values of Nc and Nu were generated randomly (a total

of 10000 replications) in the range of 0 B (Nc,

Nu) B Nmax where Nmax is the largest observed Nc

or Nu at the start of each developmental period. As a

standardised measure, E facilitates comparison across

treatments and stages of development.

Generalised linear-mixed model (GLMM, see Bol-

ker et al. 2009) was used for analysing the differences

in patterns of cumulative loss of seeds/seedlings

amongst habitats and between the caged and the

uncaged treatments through different stages of devel-

opment: (i) germination, (ii) seedling emergence, (iii)

6 months after germination, and (iv) 2 years after. We

treated variation amongst 13 replications of each

treatment as random effects in GLMM. Cumulative

seed losses through four consecutive stages of devel-

opment were modelled on the basis of binomial

distributions using Gauss-Hemite quadrature (GHQ)

with the logistic link, and the Akaike Information

Criterion (AIC) was used for model selection

(glmmML package in R, ver. 2.12.2). Variables

included were three habitat types (H), caged/uncaged

treatments (T), four stages of development (S) and

interactions amongst these factors. For comparisons
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across habitats and treatments, odds ratios were

calculated based on the derived odds of seed loss

from the best-fit model; thus,

pðxÞ
1� pðxÞ ¼ expðaþ bxÞ

where p(x) is the probability of seed loss at stage x,

and the parameters a and b are treated as sums of

additive components,

a ¼ a0 þ aH þ aT þ aHT

b ¼ b0 þ bH þ bT þ bS þ bHT þ bHS þ bTS þ bHTS

where a0 and b0 are the base values and the subscripts

denote variables and their interactions (note that the

intercept parameter a lacks the stage component).

The odds ratio (e.g. Bland and Altman 2000) was

calculated for the uncaged against the caged treat-

ment for each habitat, in order to assess the

(a) cageduncaged

(b)

(c)

5cm

5cm

5cm

30-40cm

10-20cm

Fig. 1 Experimental setup

with three habitat types:

a no-understorey area,

b Trachelospermum,

c Pyrrosia. A pair of caged

and uncaged treatments,

each with 10 intact seeds of

Q. glauca, formed one

replication
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magnitude of rodent predation. Further, the projected

loss rate expressed as exp (b) was calculated for each

fitted curve.

In addition, ANOVA with Fisher’s PLSD was used

for comparing seedling height between the caged and

the uncaged treatments and amongst the three habitats.

Results

The rodent effect E was more pronounced in the no-

understorey habitat than in Trachelospermum and

Pyrrosia habitats throughout the study period, par-

ticularly at early stages of development (Fig. 2). Of

the two vegetated habitats, the rodent effect was

stronger in the Trachelospermum than in the Pyrrosia

habitat at germination and seedling emergence stages,

whilst no difference was recognisable at 6 months

and 2 years after start of the experiment. Interest-

ingly, the highest value of E for the Pyrrosia habitat

occurred at 6 months, in contrast to the no-understo-

rey and the Trachelospermum habitat.

The optimum model selected for the patterns of

cumulative seed loss through the GLMM analysis

(Table 1) included the three variables (habitat, treat-

ment and stage) and two interactions (habitat 9 treat-

ment, habitat 9 stage). Note that neither the

treatment–stage (TS) interaction nor the habitat–

treatment–stage (HTS) interaction was retained by

the AIC criterion adopted in our GLMM models

(which would simplify the subsequent calculation of

odds ratios). Further, environmental variation

amongst replications (i.e. random effect) was small

(mean ± SE = 0.70 ± 0.073). The difference in

cumulative seed loss between the caged and the

uncaged treatments was more pronounced in the no-

understorey habitat than in the Pyrrosia and the

Trachelospermum habitat (Fig. 3). The odds ratio of

the fitted logistic curves of the uncaged versus the

caged treatment was 3.26 (95% CI: 2.15–4.97) in the

no-understorey habitat, 1.97 (1.26–3.08) in the Trac-

helospermum habitat and 1.36 (0.89–2.08) in the

Pyrrosia habitat. These values ([1.0) suggest that the

magnitude of seed loss was greater in the uncaged

treatment than in the caged treatment.

The projected loss rate was the same in the caged

and the uncaged treatments within each habitat (i.e.

no TS interaction mentioned above) but different

amongst habitats. It was apparently lower in the no-

understorey habitat (2.39, 95% CI: 1.98–2.88) than in

the Trachelospermum (4.17, 3.32–5.28) and the

Pyrrosia habitat (3.83, 3.10–4.72). These differences

closely relate to comparisons of the fitted logistic

curves amongst habitats for the uncaged and the

caged treatments (Fig. 4), showing the advantage of

the no-understorey habitat over Trachelospermum

and Pyrrosia habitats towards later stages of devel-

opment. Under the caged condition, this advantage

was apparent as lower values of cumulative loss in

the no-understorey habitat (Fig. 4a), whilst under the

uncaged condition this advantage operated to nullify

the initial disadvantage of heavier rodent predation.

Seedling height under the caged treatment was

greater in the Pyrrosia habitat than in the no-under-

storey and the Trachelospermum habitat, whereas such

difference was not apparent under the uncaged treat-

ment (Fig. 5, ANOVA details in figure caption).

Discussion

It is notable that the two different methods of analysis

led to broadly similar conclusions regarding the

operation of rodent-associated mortality in the three

habitats. The estimated maximum mortality due to

rodents (the ‘rodent effect’) was higher in the no-

understorey habitat (Fig. 2) than those in the Trache-

lospermum and Pyrrosia habitats. Further, the analysis

of seed/seedling losses in caged and uncaged treat-

ments clearly indicated that the influence of rodents

was less pronounced under the understorey vegetation

cover (Trachelospermum and Pyrrosia habitats)

0

1.0

2.0

germination seedling
 emergence 6 months

R
od

en
t e

ffe
ct

 (
E

)

2 years

No-understory

Trachelospermum

Pyrrosia

Fig. 2 Variation in rodent effect E in the three habitats: no-

understorey (circular), Trachelospermum (triangles), and

Pyrrosia (squares)
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(Fig. 3). The loss due to rodents was virtually unrec-

ognisable after 2 years of seedling growth.

These results are in contrast to previous studies on

more typical inland forests where predation pressure

tended to be greater in habitats with understorey

vegetation than in those without (Wada 1993; Gill

and Marks 1991; Manson and Stiles 1998; George

and Bazzaz 1999a, b; Abe et al. 2001; Iida 2004;

Tsvuura et al. 2007). In the present study, vegetation

height (c. 10–20 cm in Trachelospermum and

30–40 cm in Pyrrosia) was unlikely to be an

important factor given the paucity of vertebrate

predators in this semi-isolated maritime woodland.

Rather, the morphological characteristics of Trache-

lospermum and Pyrrosia may have made the habitats

less favourable feeding grounds for rodents than no-

understorey areas, though the exact nature of rela-

tionship between vegetation type and rodent feeding

behaviour is unknown.

The results also demonstrated that different under-

storey environments induced apparently different

responses in oak seeds and seedlings. Most notably,

seedling survival was influenced by the nature of

understorey habitats in the absence of predation by

rodents (Fig. 4a, b), whilst such habitat effects were

masked by predation in the uncaged treatment. Greater

survivorship of seedlings in the no-understorey area

was in concordance with a previous study (George and

Bazzaz 1999b) where removal of vegetation led to

better light availability and seedling survival. Varia-

tion in light availability amongst habitats must also

account for differences in seedling height (Baraloto

et al. 2005). In general, lower light availability under

vegetation cover encourages seedling height increase

for a better acquisition of light rather than root or stem

growth (Sumida et al. 1997; Baraloto et al. 2005;

Rodrı́guez-Calcerrada et al. 2008). Thus, a greater

seedling height of Q. glauca under Pyrrosia is

considered as a response to reduced light under taller

and denser covers, given the observed trade-off

relationships between height increase and biomass/

stem-diameter increase in Q. glauca seedlings (Sumi-

da et al. 1997; Dickie et al. 2007). It is also notable that,

in a humid environment of the studied woodland, the

understorey vegetation might have aggravated the

growth conditions of oak seeds through elevated

humidity, thereby generating a situation opposite to

what has been known in arid Mediterranean woodlands

(e.g. Pulido and Dı́az 2005, Gómez and Hódar 2008).

From the viewpoints of recruitment in Q. glauca,

an intricate relation seems to exist between by-rodent

mortality and non-rodent mortality associated with

each habitat. In the no-understorey habitat, risks of

seed predation are high but conditions for seedling

growth, particularly light availability, are better (Rao

et al. 1997). The opposite situation applies to habitats

with understorey vegetation where less light is

available due to shading (George and Bazzaz 1999a;

de la Cretaz and Kelty 2002). This implies that the

timing of mortality may vary in different habitats, as

the initial mortality due to predation tends to be high

in no-understorey habitats whereas mortality after

seedling emergence may be higher in shaded under-

storey environments. Thus, the relative importance of

Table 1 Results of model selection by AIC for a logistic regression analysis of the cumulative seed loss data using the GLMM

Model Variables AIC

Habitat (H) Treatment (T) Stage (S) H 9 T H 9 S T 9 S H 9 T 9 S

1 s s s s s s s 537.72

2 s s s s s s 535.16

3 s s s s s 548.36

4 s s s s s 539.58

5 s s s s s 533.26 (selected)

6 s s s s 537.85

7 s s s s 546.47

8 s s s 552.74

9 s s 567.54

10 s s 582.80

11 s s 830.59
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mortality due to rodent predation and that due to

non-rodent factors varies spatially amongst habitats

and chronologically through different stages of

development.

The fact that there was an indication of increased

rodent effect (E) at seedling emergence stage in the

Pyrrosia habitats (Fig. 2) suggests that rodent preda-

tors consume the cotyledon of oak seedlings (Sato

2000; Abe et al. 2008). We also observed in the field

that A. speciosus fed on the cotyledons of germinated

seeds. Loss or damage of the cotyledon part is harmful

for seedlings, leading to a lower resprouting ability

(Bonfil 1998; Green and Juniper 2004, but also see

Sonesson 1994; Bonal et al. 2007) and reduced

tolerance of unfavourable conditions such as low light.

Therefore, even if cotyledon predation by rodents may

not immediately lead to the death of a seedling, its

subsequent survival may be seriously compromised in

understorey habitats. This might partially explain why

significant differences in seedling height amongst

habitats were detected in the caged treatment but not in

the uncaged one, as the latter had more uniform effects

of predation in all habitats.

The above considerations suggest that Q. glauca

has broadly two possibilities for achieving its

recruitment success: risking predation mortality at

an early stage but growing faster in a well-lighted

condition of no-understorey habitat, or reducing

predation mortality but risking high seedling mortal-

ity due to shading in a vegetated understorey habitat.

The advantages and disadvantages of these possibil-

ities would change in different spatio-temporal con-

texts. The fact that Q. glauca demonstrates such

context-dependent survival of young stages concurs

with the observation of temporally variable allome-

tric growth patterns (Sumida et al. 1997).

The preceding discussion points to a practical

advantage of evaluating different seed loss factors

simultaneously for an extended period of time, as

their relative importance may shift with different

spatial and temporal scales. For example, predation

effects detected at an early stage of development may

be completely nullified by non-predation mortality at

a later stage, and vice versa. As seeds pass through
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treatments. Parameters (a, b) of the equation, y = exp(a ? bx)/
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b
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several critical stages in short succession, such an

approach is more valuable than a single-factor,

single-time analysis which may generate a mislead-

ing picture. The approach taken in the present study

would contribute to a further refining of the analysis

of seed/seedling mortality which is a critical aspect of

plants’ life history.
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Garcı́a D, Ba MJ, Houle G (2002) Differential effects of acorn

burial and litter cover on Quercus rubra recruitment at the

limit of its range in eastern North America. Can J Bot

80:1115–1120. doi:10.1139/B02-102

George LO, Bazzaz FA (1999a) The fern understory as an

ecological filter: emergence and establishment of canopy-

tree seedlings. Ecology 80:833–845

George LO, Bazzaz FA (1999b) The fern understory as an

ecological filter: growth and survival of canopy-tree

seedlings. Ecology 80:846–856

Gill DS, Marks PL (1991) Tree and shrub seedling colonization

of old fields in central New York. Ecol Monogr 61:183–205
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